

mension for measures. Let us define our setting and recall some basics. Let μ be a finite Borel measure fully supported on a metric space X.

Definition

The **Assouad dimension** of μ is defined as

 $\dim_{\mathcal{A}} \mu = \inf \left\{ s > 0 \mid \exists C > 0, \text{ s.t. } \forall x \in X, \\ 0 < r < R, \frac{\mu(B(x, R))}{\mu(B(x, r))} \le C\left(\frac{R}{r}\right)^s \right\}.$

- Quantifies the size of the most irregular parts of the measure: If a measure has a large Assouad dimension, then there are many concentric balls as in Figure 1, such that the bigger ball has much more measure than the smaller ball.
- A measure is doubling if and only if it has finite Assouad dimension.

Recall: A measure μ is **doubling** if there exists a constant C > 0, such that

 $\mu(B(x,2r)) \le C\mu(B(x,r)),$

for all $x \in X$ and r > 0.

• The Assouad dimension is "the greatest of all di-

-

• Quantifies the size of the most irregular **scales** of the measure at a given point: If a measure has a large pointwise Assouad dimension, then there are many concentric balls **at a given point**, such that the bigger ball has much more measure than the smaller ball.

Main results

Proposition:

A measure is pointwise doubling at $x \in X$ if and only if it has finite pointwise Assouad dimension at x.

Recall: A measure μ is **pointwise doubling** at $x \in X$ if there exists a constant $C_x > 0$, such that

 $\mu(B(x,2r)) \le C_x \mu(B(x,r)),$

for all r > 0.

The **upper local dimension** of μ at x is defined by

$\overline{\dim}_{\mathrm{loc}}(\mu, x) \coloneqq \limsup_{r \downarrow 0} \frac{\log \mu(B(x, r))}{\log r}.$

Proposition:

Fig. 4: An example of a self-conformal set

Let Λ be a finite index set, and let $\Sigma = \Lambda^{\mathbb{N}}$ and $\Sigma_* = \bigcup_{n=0}^{\infty} \Lambda^n$. Denote $\mathbf{i} = (i_1, i_2, \dots, i_n) \in \Sigma_*$.

Definition:

A measure ν on Σ is **quasi-Bernoulli**, if there is a constant $C \geq 1$, such that for all $\mathbf{i}, \mathbf{j} \in \Sigma_*$, we have

 $C^{-1}\nu([\mathbf{i}])\nu([\mathbf{j}]) \le \nu([\mathbf{i}\mathbf{j}]) \le C\nu([\mathbf{i}])\nu([\mathbf{j}]).$

An Iterated Function System (IFS) $\{\varphi_i\}_{i=1}^N$ is **con**formal if

1. There is an open, bounded and connected $\Omega \subset \mathbb{R}^d$, and a compact $X \subset \Omega$ with non-empty interior, such that

 $\varphi_i(X) \subset X,$

for all $i \in \Lambda$.

2. For each $i \in \Lambda$, the map φ_i is a contracting $C^{1+\varepsilon}$ diffeomorphism, and $\varphi_i|_{\Omega}$ is a conformal map. That is, for every $y \in \Omega$, we have

 $|\varphi_i'(x)y| = |\varphi_i'(x)||y|,$

where $|\varphi'_i(x)|$ denotes the operator norm of the linear map $\varphi'_i(x)$.

mensions" [Fra20], that is

 $\dim_{\mathbf{A}} \mu \geq \dim \mu,$

where dim μ can be replaced with Hausdorff dimension, Minkowski dimension, packing dimension, etc.

Bedford-McMullen sponges

	1

Fig. 2: An example of a Bedford-McMullen carpet satisfying the VSSC

A **Bedford-McMullen sponge** in \mathbb{R}^d is constructed as follows.

 Choose integers n₁ < n₂ < ..., n_d, and a subset
 Λ ⊂ Π^d_{q=1} {0, ..., n_q − 1},
 2. For all ī = (i₁, ..., i_d) ∈ Λ, define an affine trans form φ_ī : [0, 1]^d → [0, 1]^d by
 We have $\overline{\dim}_{\text{loc}}(\mu, x) \leq \dim_{A}(\mu, x) \leq \dim_{A} \mu,$ for all $x \in X$.

These propositions are analogous to the properties of the global Assouad dimension.

• Generally, we can have $\sup_x \dim_A(\mu, x) < \dim_A \mu$ (see Example).

• However in many classical examples, the pointwise Assouad dimension exhibits an exact dimensionality property.

Theorem:

Let μ be one of the following:

1. A self-affine measure on a Bedford-McMullen sponge in \mathbb{R}^d satisfying the VSSC,

2. A doubling self-similar measure satisfying the open set condition,3. A quasi-Bernoulli measure on a strongly separated self-conformal set.

Then μ satisfies

 $\dim_{\mathbf{A}}(\mu, x) = \dim_{\mathbf{A}} \mu,$

for μ -almost every $x \in \operatorname{spt}(\mu)$.

Example

The limit set of such an IFS is called a **selfconformal set**.

If $\mu \coloneqq \pi_* \nu$ is the projection of a quasi-Bernoulli measure ν on Σ under the natural projection $\pi \colon \Sigma \to F$ given by

$$\{\pi(\mathbf{i})\} = \bigcap_{n=1}^{\infty} \varphi_{\mathbf{i}|_n}(F),$$

then μ is called quasi-Bernoulli.

Future work

Next step could be to analyse the μ -null set left out in the previous Theorem by developing theory for **multifractal analysis** of the pointwise Assouad dimension. That is, one could study the size of the α -level sets

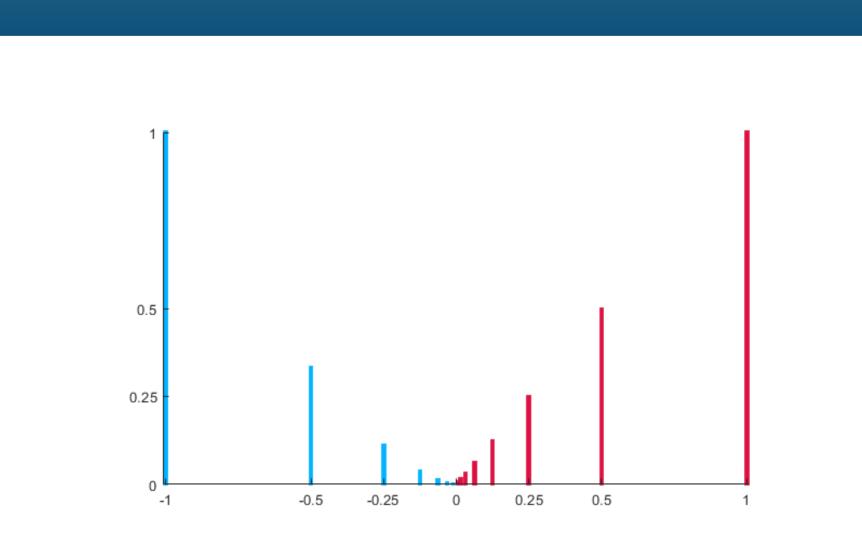
$E_{\alpha} \coloneqq \{x \in \operatorname{supp}(\mu) \colon \dim_{\mathcal{A}}(\mu, x) = \alpha\}.$

More specifically, it would be interesting to calculate the **multifractal Assouad spectrum of** μ given by

 $\varphi_{\overline{\imath}}(x_1, \dots, x_d) = \left(\frac{x_1 + i_1}{n_1}, \dots, \frac{x_d + i_d}{n_d}\right).$ The limit set of this IFS is called a **Bedford-**

McMullen sponge. Definition:

A Bedford-McMullen sponge satisfies the **very** strong separation condition (VSSC), if for words $(i_1, \ldots, i_d), (j_1, \ldots, j_d) \in \Lambda$ satisfying $i_k =$ j_k , for all $k = 1, \ldots, q - 1$, and $i_q \neq j_q$, for some $q = 1, \ldots, d$, we have $|i_q - j_q| > 1$.(See Figure 2).



The measure $\mu = \sum_{n=0}^{\infty} 3^{-n} \delta_{-2^{-n}} + 2^{-n} \delta_{2^{-n}}$ is pointwise doubling at every point in its support, but not doubling. In particular, we have $\dim_{A}(\mu, x) \leq 1 < \dim_{A} \mu = \infty$, for every $x \in \operatorname{spt}(\mu)$.

$f(\alpha) = \dim_{\mathrm{H}} E_{\alpha},$

for example in the context of self-similar or self-affine measures.

References

[Ant22] R. Anttila. "Pointwise Assouad dimension for measures". Preprint, available at https://arxiv.org/abs/ 2203.15301. 2022.

[Fra20] J.M. Fraser. Assound Dimension and Fractal Geometry. Cambridge Tracts in Mathematics. Cambridge University Press, 2020.

